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Hidden Markov Model is a 
statistical model frequently 
used for modelling 
biological sequences.  In 
HMM, a sequence is 
modelled as an output of a 
discrete stochastic process, 
which progresses though a 
series of states that are 
“hidden” from the 
observer. At each state the 
process outputs a symbol 
from a finite alphabet (e.g. 
{A,T,C,G,ε}, where ε is an 
empty symbol ) according 
to some probability 
distribution.  
 

Introduction 
 

A hidden Markov model (HMM) is a statistical model, initially developed for speech 

recognition (Rabiner, 1989), which has subsequently been used in numerous 
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biological sequence analysis applications. Current applications of HMMs in 

computational biology include among others modelling protein families (Eddy 2001, 

Krogh et al, 1993), gene finding, ( Krogh et al. 1994, Burge et al, 1997, Lukashin et 

al, 1998, Henderson et al 1997, Salezberg, 1998), prediction transmembrane helices 

(2001)  Krogh, , tertiary structure prediction (Bystroff, 2000; DiFrancesco et al 1997). 

In a hidden Markov model, a biological sequence, e.g. a protein, DNA or RNA 

sequence, is modelled as an output generated by a stochastic process progressing 

through discrete time steps. At each time step, the process outputs a symbol (an amino 

acid or a nucleotide) and moves from one of a finite number of states to the next state. 

Frequently it is convenient to have states that do not output any symbol (e.g. a 

“delete” state in the profile HMM described below) thus, for uniformity, we include 

empty symbol, ε, in the alphabet.  Both actions, the transition from state to state and 

the emission of a symbol, follow probability distributions, which are a part of the 

model. In a hidden Markov model, only the sequence of emitted symbols is observed. 

The path of states followed by the process is “hidden” from the observer.  

Given a hidden Markov model, M, and a sequence S, the standard question is whether 

S has the property modelled by M. To address this question one needs to compute the 

probability, P[S|M], of sequence S being generated by M. The log of the ratio of 

P[S|M] to the probability of generating S by chance is usually used as a scoring 

function in assessing whether S has the model property. For example, given an HMM 

representing the globin protein family and a sequence of amino acids, the scoring 

function described above is used to determine if the given sequence belongs to the 

globins family.  

Often hidden Markov models are designed in such a way that their states correspond 

to biologically relevant positions in the sequence. For example, in an HMM for gene 

finding, specific states may correspond to the beginning and to the end of an exon. In 

this case the most likely path of states used to generate the sequence contains 

information for annotating the sequence. Therefore, another important question 

concerning an HMM is finding the most likely path of states for a given sequence.  

The following sections provide a formal definition of an HMM, describe efficient 

algorithms for finding the most likely path of states for a sequence, computing P[S|M], 

and finally describe methods of designing hidden Markov models. 
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Definitions  
 

A first order hidden Markov model is defined formally as a tuple, M = (Q, Σ, a, s,, e) 

where: 

− Q =.{1,…,n} is a finite set of states; 

−  Σ = {σ1, …,σm} – is the alphabet, i.e. the set of output symbols;.  

− a is  n x n matrix of transition probabilities defined formally as a(i,j) = 

Pr[qt+1= j|qt = i], where qt is the state visited at step t; 

− s is n vector of start probabilities, i.e. s (i) = Pr[q0 = i] 

− e(i,j)  is  n x m matrix of emission probabilities  defined formally as e(i,j) = 

P[ot=σj|qt = i]; where ot∈Σ is the symbol outputted in step t.  

It is often convenient to have distinguished “start” and “end” states:  0, and  n+1 that 

do not emit any symbols and remove vector s from the model definition. In the 

considerations below, we make this assumption. An HMM is usually visualized as a 

directed graph with vertices corresponding to the states and directed edges to the pairs 

of states i, j for which transition probability a(i,j) is non-zero. A simple HMM is 

shown in Figure 1. 

 

In a kth  order model the transition and emission probabilities depend on k last steps. 

Consequently, matrix a is of size  nk+1 and matrix e is of size nk m. 

 

An HMM may generate the same sequence following different state paths (see Figure 

1). Given an HMM M, sequence S= ο1,…,οT, and a path of states p = 

q0q1…qmqT+1where q0=0  and qT+1 = n+1, the probability of generating S using path p 

in model M, P[S, p|M], is equal to the product:  
 

P[S,p|M] = P[p|M] P[S|p,M] 
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where P[p|M] is the probability of the selecting the path p and P[S|p,M] the 

probability of generating sequence S assuming path p. 

 

P[p|M]  =  a(q0,q1) a(q1 , q2) a(q2 , q3) … a(qT, qT+1); 

P[S|p,M]  = e(q1,ο1) e(q2, ο2) … e(qT, οT) 
The most likely path of a sequence S in model M is the path, pmax, that maximizes 

P[S,p| M] . Thus although the states of a hidden Markov are not directly observable, 

the most likely path provides information about the likely sequence of such “hidden” 

states.  

Finally, the probability P[S|M] of generating sequence S, by an HMM, M is defined 

as: 

P[S|M] = ΣpP[S|M,p] 

 In practical applications probabilities values P are replaced with –log  P score. This 

avoids producing numbers that are too small to be represented by a computer.  

 Basic algorithms 
 

Given an HMM, M, and a sequence, S = ο1,…οT of length T, and assume that in step 

T+1 the process is in the stop state (n+1) generating empty symbol. The values pmax 

and P[S|M] can computed using a dynamic programming method. Let vk(i) be the 

most probable path that generates ο1,…οi and ends at state k at step i.  Obviously 

 

pmax = vn+1(T+1). 

 

The recurrence for computing vk(i) is given by the following formula: 

 

v k(i)= e(k,οi) max j vj(i-1)a(j,k). 

 

With appropriate initial conditions, the above recurrence provides the basis for an 

O(n2T)- time dynamic programming algorithm known as the Viterbi algorithm. Since 

the number of states, n, is fixed for the model, the time of the algorithm depends 

linearly on the length of the input sequence. 
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Replacing maximum with summation in the recursive formula for vk(i) yields the 

recurrence for [S|M]. Namely, let fk(i) denote the probability of generating 

subsequence ο1,…οi using a path that ends at state k. Then 

 

fk(i) = e(k,οi)Σj fj(i-1)a(j,k) 

and 

P[S|M] = fn+1(T+1). 

 

Variable fk(i), called the forward variable, is also used for computing the probability 

of state k in step i, P[qi = k|S,M]. To compute the last probability, a similar backward 

variable, bk(i), is also used. Formally, bk(i)  is the probability of generating the 

subsequence οi+1,…οT using state k as the starting state and the usual “end” state n+1. 

The backward variable is computed similarly as the forward variable but the 

algorithm is executed in the “backward” direction: using “end” state in the place of 

the “begin” state. By definition of  fk(i), bk(i)  follows that: 

P[qi = k|S,M]  = (fk(i) bk(i) )/P[S|M]. 

 

Construction and training of an HMM 
 

There are two basic steps in building of an HMM: designing the directed graph that 

describes the topology of the model (number of states, connections between states) 

and assigning transition and emission probabilities.  

 

The topology of an HMM is usually designed in an ad-hoc way, based on the 

designer’s understanding of the modelled sequence. Frequently, such a sequence can 

be described by a “grammar”. For example, a simple grammar for a prokaryotic gene 

can be given as S (C)n E where S is the start codon, C is any codon different than an 

end codon and E is an end codon. C is repeated n times. In this case, it is natural to 

design the topology of an HMM in a way that follows the grammatical description. In 

the prokaryotic gene example, a topology implied by the simple grammar is shown on 
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Figure 2. The grammar, and subsequently a corresponding HMM, for the eukaryotic 

gene is far more complicated. It needs to describe a gene sequence as an interleaving 

sequence of exons and introns taking into account that the splicing can occur at any 

position a codon.  

 A different approach is taken in designing the so-called profile hidden Markov 

models for protein families. Namely, a universal topology is used and a correct setting 

of parameters elucidates the variations between families. The design includes “match” 

states, “insert” states and silent “delete” states  (Figure 3). 

 

In the second phase of the construction, the transition and emission probabilities are 

assigned to the model. This is done automatically based on a representative sample of 

sequences called the training set. The computational problem is described formally as 

follows:  

 

Given a training set S1, ..Sn and a topology of an HMM, M, find emission and 

transition probabilities that maximize the likelihood that S1, ..Sn are generated by the 

model. 

The usual assumption is that S1, ..Sn are generated independently and therefore  

P(S1, ..Sn |M) = Πi P(Si |M) 

 And replacing the probability  with -log score we have 

Score(S1, ..Sn |M)    = Σi Score (Si |M). 

 

The training step is straightforward if for each training sequence, Si, the paths of 

states, which the model uses to generate Si, is known. In this case the training step 

reduces to collecting transition and emission frequencies along these paths. The 

training step becomes more sophisticated if the state paths are unknown. The main 

strategy in this case is to start with some initial probability distribution and the 

iteratively improve the model using the training set. For example, one frequently used 

method, the Expectation Maximization method approaches this problem as follows: 

1. Assign some initial value to parameters (say uniform probability distribution). 

2. For each sequence in the training set, compute the expected number of times 

each transition/emission is used. This can be done efficiently using the 

algorithms described in the previous section. 
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3. Estimate new parameters of the model based on the expected values  from  

step 2. 

4. Repeat steps 2 and 3 until some convergence criterion is reached. 

It can be shown that Expectation Maximization method converges to a local 

maximum. Other training methods include the gradient descent method and simulated 

annealing. 

One of the fundamental questions that one needs to consider during the training 

process is whether the training set contains enough data to estimate correctly 

transition and emission probabilities . Lack of data leads to overfitting of the model – 

the model cannot generalize the training data to a larger set. In particular, the question 

of sufficient data needs to be examined when deciding on the order of the model. In 

principle, a higher order model should be more accurate. For example, gene 

recognition models often are of 5th order. (This is equivalent of keeping memory of 

two codons.) The number of parameters that need to be estimated grows exponentially 

with the order of the model and the possibility of overfitting increases.  
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Figure 1. A simple hidden Markov model. The boxes correspond to states where the 
emmision probabilites for each state are given inside each box. The tranition 
probabilities are given above the corresponding arrows. Note that there are two state 
paths that can be used to generate sequence GAGCGCT:  0,1,2,4,4,4,4,6,7 and 
0,1,2,3,3,3,3,6,7. The probability of generating the sequence using the first path is 
1.06 x10–4 and using the second path  is 4.05 x 10-9. The probability of generating the 
sequences by the model is the sum of these probabilities. 
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Figure 2. The topology of a simple HMM for prokaryotic gene recognition. In practice, the 
topology is more complex (e.g. Krogh 1994). 
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Figure 3. The topology of a profile HMM for a sequence family. The states labelled 

with M correspond to matches, the states labelled with I correspond to insertions and 

(silent) circle states correspond to deletions. 
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